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Scattering of an unpolarized Bessel beam by spheres
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The scattering process of an unpolarized Bessel beam through spherical scatterers is investigated. We
derive the analytical solutions of scattered fields of x- and y-polarized Bessel beams using a sphere, after
which the dimensionless scattering function for an unpolarized Bessel beam is obtained. The dimensionless
scattering function is applicable to spherical scatterers of any size on the beam axis or near it. Through
numerical simulations, we demonstrate that extreme points exist in the direction or neighboring direction
of the conical angle for spherical scatterers on the beam axis, whereas the existence of extreme points
depends on the ratio between the spherical scatterers size and central spot size of the Bessel beam.
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Bessel beams were first introduced by Durnin[1,2]. These
non-diffracting beams can maintain the same intensity
profile at any plane orthogonal to their propagation di-
rections, and their initial intensity profiles can be re-
constructed even when they have been disturbed by an
obstacle under free propagation[3]. The special proper-
ties of Bessel beams have generated much interest from
various domains, including optical acceleration[4,5], op-
tical manipulation[6,7], nonlinear optics[8,9], and optical
interconnection and alignment[10,11]. Light scattering is
an important issue in various scientific and engineering
applications, and extensive studies on scattering of light
beams by different shaped particles, particularly spher-
ical particles, have been carried out. For example, light
scattering by a sphere located arbitrarily in a Gaussian
beam has been described by Gouesbet et al.[12]. Barton
et al.[13] have reported on theoretical expressions and nu-
merical calculations for internal and near surface electro-
magnetic fields for a spherical particle irradiated by a
focused Gaussian beam. However, only Marston has in-
vestigated the scattering by spheres centered on the beam
axis[14] of Bessel beams. Nevertheless, research concern-
ing the scattering of Bessel beams is very limited in cur-
rent literature.

In this letter, we first derive the analytical solutions
of scattered fields of x- and y-polarized Bessel beams
by a sphere. Next, dimensionless scattering function for
an unpolarized Bessel beam is obtained using analytical
solutions. The dimensionless scattering function is ap-
plicable to spherical scatterers on the beam axis or near
it. Through numerical simulation, we demonstrate that
extreme points exist in the direction or neighboring direc-
tion of the conical angle. For spherical scatterers on the
beam axis, the existence of the extreme points depends
on the ratio between the size of the spherical scatterers
and the size of the central spot of the Bessel beam. This
phenomenon can be explained better through quantum
theory.

In processing scattering questions[15−17], multiple ex-
pansion of radiation field in terms of spherical vector
wave functions (SVWFs) are often required. Every solu-
tion to the vector Helmholtz equation can be expressed
as a linear combination of SVWFs[18]. The SVWFs have

the following form:
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where z
(κ)
n (kr) represents all kinds of the spherical

Bessel functions (κ = 1, 2, 3, 4); Pm
n (cos θ) represents

the associated Legendre polynomials of degree n and or-
der m; πmn(cos θ) = mPm

n (cos θ)/ sin θ, τmn(cos θ) =
dPm

n (cos θ)/dθ; êr, êθ, and êφ are the unit vectors of
the spherical coordinate system; k is the wave number of
medium, and time dependence exp(−iωt) is omitted.

We considered a sphere at position (x0, y0, z0) in a rect-
angular coordinate system exposed to a polarized Bessel
beam propagating along the z-axis. The polarized Bessel
beam can be expressed in the following integral form[19]:

Ei(r) = E0

2π∫
0

ev(α, β) exp(ik · r)dβ, (3)

where E0 is the peak amplitude, exp(ik·r) denotes a plane
wave with wave vector k = (k, α, β), ev(α, β) represents
the unit polarization vectors, v represents polarization
directions x and y, and parameter α is being called coni-
cal angle of the Bessle beam. For the x- and y-polarized
Bessel beams, ev(α, β) has the following form, respec-
tively:

ex(α, β) = sin α cos βêr(α, β) + cos α cos βêθ(α, β)
− sinβêφ(α, β),

ey(α, β) = sin α sinβêr(α, β) + cos α sinβêθ(α, β)
+ cos βêφ(α, β).

In a spherical system with its origin at the center of
the sphere, a polarized plane wave can be represented in
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terms of SVWFs as[15]
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, (4)

where
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,
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By substituting Eq. (4) into Eq. (3) and performing in-
tegration over β, the expansion of the polarized Bessel
beam in terms of SVWFs is obtained as[18]
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and φ0 = arctan(y0/x0) + π/2.

The corresponding magnetic field of the polarized Bessel
beam is expressed by
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We can also expand the scattered field (Es,Hs) in the
ambient medium and the field (E1,H1) inside the sphere

in terms of SVWFs as
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where k1 and k are the wave numbers in the sphere and
ambient medium, respectively, and µ1 and µ are the cor-
responding magnetic permeabilities. Using the bound-
ary conditions for electromagnetic field at the spheri-
cal scatterer surface, i.e., r = a, Eiθ + Esθ = E1θ and
Hiθ + Hsθ = H1θ, the coefficients, aν

mn and bν
mn can be

solved as
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where the prime indicates differentiation with respect to
the argument in parentheses, the size parameter x = kα,
and η is the refractive index of the sphere relative to the
ambient medium.

In the free space far from the spherical scatterer, kr À
n2, h

(1)
n ≈ (−i)n+1 exp(ikr)/(kr), accordingly,
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By substituting Eqs. (11) and (12) into the scattered
field Eq. (7) and by writing the scattered field intensity
as

I(r, θ, φ) =
E2

0

k2r2
Fν(θ, φ), (13)

then Fν(θ, φ), which is the dimensionless scattering func-
tion, can be obtained from Eq. (13) as

Fν(θ, φ) = |Sν
1 (θ, φ)|2 + |Sν

2 (θ, φ)|2 , (14)
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where Sν
1 (θ, φ) and Sν

2 (θ, φ) are the scattering amplitude
functions given by
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For a completely unpolarized Bessel beam that can be
viewed as the incoherent superposition of two orthogo-
nally polarized Bessel beams with equal amplitudes, its
corresponding dimensionless scattering function is

F (θ, φ) = Fx(θ, φ) + Fy(θ, φ). (15)

It is obvious that the dimensionless scattering function
describing the intensity of scattered radiation in any
given direction is only relevant to the scattering angle θ
and the azimuth angle φ.

In numerical calculations, we used the following pa-
rameters: λ = 1.55 µm and α = π/6 for the unpolarized
Bessel beam; x0 = y0 = z0 = 0 for the spherical scatterer
position in the Bessel beam; µ1 = µ = 1 for the magnetic
permeability of the spherical scatterer and its ambient
medium. When the spherical scatterer is on the axis of
the unpolarized Bessel beam, the azimuth angle value
can be selected arbitrarily because of the axial symmetry
of the dimensionless scattering function. The dimen-
sionless scattering function is an infinite series, and in
order to keep enough terms to yield a sufficiently ac-
curate approximation, the summation upper limit must
be set as N = x + 4x1/3 + 2, where x refers to the size
parameter[20].

Figure 1 shows the dimensionless scattering function
for spherical scatterers with a radius a = 2λ and different
refractive indices. Figure 2 shows the dimensionless scat-
tering function for spherical scatterers with a refractive
index η = 1.33 and different radii. The two figures
indicate that for larger spherical scatterers, there exist
extreme points in the direction or neighboring direction
of the conical angle that are not affected by different re-
fractive indices and radii of the spherical scatterers. This
phenomenon is also found and explained geometrically
by Marston[14]. The wave-particle duality of light means
that this phenomenon can be explained better through
quantum theory.

Obviously, the refractive indices of spherical scatter-
ers do not affect the existence of the extreme points
in the direction or neighboring direction of the conical
angle. The spherical scatterers are on the axis of the
Bessel beam; hence, this phenomenon must be associ-
ated with the size of both the scatterers and the central
spot of the Bessel beam. Let σ denote the ratio between

Fig. 1. Dimensionless scattering function for spherical scat-
terers with a radius a = 2λ and different refractive indices η
on the axis of a Bessel beam.

Fig. 2. Dimensionless scattering function for spherical scat-
terers with a refractive index η = 1.33 and different radii a
on the axis of a Bessel beam.

a spherical scatterer radius and the central spot radius of
the Bessel beam, then σ = a/ρ = ak sinα/2.405, where
ρ = 2.405/(k sinα) is the central spot radius of the Bessel
beam[1].

Figure 3 shows that an extreme point emerges in the di-
rection or neighboring direction of the conical angle when
σ > 5/4. Figure 4 shows that the extreme point vanishes
when σ < 5/4, indicating that σ ≈ 5/4 can be thought of
approximately as the critical condition for the existence
of the extreme point in the direction or neighboring direc-
tion of the conical angle. Further numerical calculations
verify that the above conclusion is always efficacious for
any different Bessel beams, with different wavelengths
and conical angles. In addition, a larger conical angle
requires a larger σ for its extreme point to be seen.

Writing the critical condition σ ≈ 5/4 in another form,
ak sinα/2.405 ≈ 5/4, and multiplying the Planck con-
stant h̄ = h/(2π) on both sides, a new version of the
critical condition is obtained after some simple algebra
calculations:

2a∆p⊥ ≈ h, (16)

where ∆p⊥ = h̄k sinα and 2a refers to the diameter of
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Fig. 3. Dimensionless scattering function at different σ
(σ ≥ 5/4), σ denotes the ratio between a spherical scat-
terer radius and the central spot radius of a Bessel beam.

Fig. 4. Dimensionless scattering function at different σ (σ ≤
5/4).

the spherical scatterer. From Eq. (16), it can be seen
that the critical condition for the existence of an extreme
point in the direction or neighboring direction of the con-
ical angle is a representation of the well-known Heisen-
berg uncertainty principle. According to the quantum
theory, in the case of σ < 5/4, 2a∆p⊥ < h, which means
the photons interacting with the sphere are in the same
state, moving forward along the beam axis; hence, the
forward scattering along the beam axis is peaked and the
extreme point disappears in the direction or neighboring
direction of the conical angle. In the case of σ > 5/4,
2a∆p⊥ > h, the photons interacting with the sphere are
not only in the forward direction but also in the direction
of the conical angle of the Bessel beam. Therefore, it is
possible that the forward scattering along the beam axis
is peaked. At the same time, the extreme point exists in
the direction or neighboring direction of the conical angle
of the Bessel beam.

In this letter, we investigate the scattering process of
an unpolarized Bessel beam by spheres. Analytical so-
lutions of scattered fields of x- and y-polarized Bessel
beams by a sphere have been derived. Utilizing the an-
alytical solutions, dimensionless scattering function for
an unpolarized Bessel beam has been obtained. The di-
mensionless scattering function is applicable to spherical

scatterers on the axis of an unpolarized Bessel beam or
near it. Through numerical simulation, we have demon-
strated that there are extreme points in the direction or
neighboring direction of the conical angle for spherical
scatterers on the beam axis. In addition, the existence
of the extreme points has been found to depend on the
ratio between size of the spherical scatterers and the size
of the central spot of a Bessel beam.

The appearance and disappearance of an extreme point
in the direction or neighboring direction of the conical an-
gle can be explained through the application of the quan-
tum theory in the scattering process of a Bessel beam by
spheres according to the wave-particle duality of light.
The propagation of Bessel beam is not in conflict with
the Heisenberg uncertainty principle[2]. In fact, this prin-
ciple also plays an important role in the light scattering
process of unpolarized Bessel beams by spheres.

The work was supported by the National Natural Sci-
ence Foundation of China (No. 60578054) and Tian-
jin Municipal Science and Technology Commission (No.
08JCZDJC19300).

References

1. J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987).

2. J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, Phys. Rev.
Lett. 58, 1499 (1987).

3. Z. Bouchal, J. Wagner, and M. Chlup, Opt. Commun.
151, 207 (1998).

4. B. Hafizi, E. Esarey, and P. Sprangle, Phys. Rev. E 55,
3539 (1997).

5. D. Li and K.Imasaki, Appl. Phys. Lett. 86, 031110
(2005).

6. V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett,
and K. Dholakia, Nature 419, 145 (2002).

7. D. G. Grier, Nature 424, 810 (2003).

8. T. Wulle and S. Herminghaus, Rev. Lett. 70, 1401
(1993).

9. S. Sogomonian, S. Klewitz, and S. Herminghuas, Opt.
Commun. 139, 313 (1997).

10. R. P. MacDonald, S. A. Boothroyd, T. Okamoto, J.
Chrostowski, and B. A. Syrett, Opt. Commun. 122, 169
(1996).

11. C. Yu, M. R. Wang, A. J. Varela, and B. Chen, Opt.
Commun. 177, 369 (2000).

12. G. Gouesbet, B. Maheu, and G. Grehan, J. Opt. Soc.
Am. A 5, 1427 (1988).

13. J. P. Barton, D. R. Alexander, and S. A. Schaub, J. Appl.
Phys. 64, 1632 (1988).

14. P. L. Marston, J. Acoust. Soc. Am. 121, 753 (2007).

15. L. Tsang, J. A. Kong, and R. T. Shin, Theory of Mi-
crowave Remote Sensing (Wiley-Interscience, New York,
1985).

16. M. I. Mishchenko, J. Opt. Soc. Am. A 8, 871 (1991).

17. J. A. Lock, Appl. Opt. 34, 559 (1995).

18. C. Bohren and D. Huffman, Absorption and Scattering of
Light by Small Particles (John Wiley, New York, 1983).

19. T. Cizmar, V. Kollarova, Z. Bouchal, and P. Zemanek,
New J. Phys. 8, 43 (2006).

20. W. J. Wiscombe, Appl. Opt. 19, 1505 (1980).


